The Equivariant Bundle Subtraction Theorem and its applications
نویسنده
چکیده
In the theory of transformation groups, it is important to know what kind of isotropy subgroups of G do occur at points of the space upon which the given group G acts. In this article, for a finite group G, we prove the Equivariant Bundle Subtraction Theorem (Theorem 2.2) which allows us to construct smooth G-manifolds with prescribed isotropy subgroups around the G-fixed point sets. In Theorem 0.1, we restate Oliver’s result about manifolds M and G-vector bundles over M that occur, respectively, as the G-fixed point sets and their equivariant normal bundles for smooth G-actions on disks. In Theorems 0.2 and 0.3, we prove the corresponding results for smooth G-actions on disks with prescribed isotropy subgroups around M . In Theorems 0.4 and 0.5, for large classes of finite groups G, we explicitly describe manifolds M that occur as the G-fixed point sets for such actions on disks. These actions are expected to be useful for answering the question of which manifolds occur as the G-fixed points sets for smooth G-actions on spheres. 0. Introduction. In the theory of transformation groups, it often happens that a solution of a particular problem depends on the family of the isotropy subgroups that we allow to occur at points in the space upon which a given group G acts. In [O4], for a finite group G not of prime power order, Oliver describes necessary and sufficient conditions under which a smooth manifold M occurs as the G-fixed point set and a smooth G-vector ν over M stably occurs as the equivariant normal bundle of M in D (resp., E) for a 1991 Mathematics Subject Classification: Primary 57S17, 57S25; Secondary 55M35, 55R91.
منابع مشابه
Modeling of Infinite Divisible Distributions Using Invariant and Equivariant Functions
Basu’s theorem is one of the most elegant results of classical statistics. Succinctly put, the theorem says: if T is a complete sufficient statistic for a family of probability measures, and V is an ancillary statistic, then T and V are independent. A very novel application of Basu’s theorem appears recently in proving the infinite divisibility of certain statistics. In addition ...
متن کاملRing structures of mod p equivariant cohomology rings and ring homomorphisms between them
In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...
متن کاملFan-KKM Theorem in Minimal Vector Spaces and its Applications
In this paper, after reviewing some results in minimal space, some new results in this setting are given. We prove a generalized form of the Fan-KKM typetheorem in minimal vector spaces. As some applications, the open type of matching theorem and generalized form of the classical KKM theorem in minimal vector spaces are given.
متن کاملEquivariant Cohomology and Equivariant Characteristic Numbers of a Homogeneous Space
Let G be a compact connected Lie group with maximal torus T , and H a closed subgroup containing T . We compute the equivariant cohomology ring and the equivariant characteristic numbers of the homogeneous space G/H under the natural action of the maximal torus T . The computation is based on the localization theorems of Borel and of Atiyah-Bott-Berline-Vergne. Let G be a compact connected Lie ...
متن کاملLogarithmic Trace and Orbifold Products
The purpose of this paper is to give a purely equivariant definition of orbifold Chow rings of quotient Deligne-Mumford stacks. This completes a program begun in [JKK] for quotients by finite groups. The key to our construction is the definition (Section 6.1), of a twisted pullback in equivariant K-theory, KG(X) → KG(I2G(X)) taking non-negative elements to non-negative elements. (Here I G (X) =...
متن کامل